SUMMARY OF CLINICAL TRIALS | Year | End Point | Title | Institution | Primary Investigators | N | Journal /Publication | Outcome | |------|---------------------------|--|------------------------------------|---|-----|---|--| | 2019 | Grip Strength | Effect of Shirts with 42% Celliant® Fiber on tcPO2 Levels and Grip
Strength in Healthy Subjects: A Placebo-Controlled Clinical Trial | Long Beach VA Memorial
Hospital | Dr. lan Gordon,
Dr. Mark Vangel and
Dr. Michael R Hamblin | 24 | Journal of Textile Science
and Engineering | Improved grip strength of
over 12% in the dominant
hand after 90 minutes | | 2014 | Tissue Oxygen
(TCPO2) | Randomized Controlled Trial Comparing the Effects of
Far-Infrared Emitting Ceramic Fabric Shirts and Control
Polyester Shirts on Transcutaneous PO2 | Long Beach VA Memorial
Hospital | Dr. lan Gordon, James
Wason, Dr. Lawrence
Lavery, Dr. Michael R
Hamblin and MS Thein | 153 | Journal of Textile Science
and Engineering | Average increase in TCPO2 of 8.4% after 90 minutes for 71% of the subjects | | 2012 | Elbow and Wrist
Pain | Effect of Celliant* Materials on Pain and Strength in Subjects with Chronic Elbow and Wrist Pain | Long Beach VA Memorial
Hospital | Dr. lan Gordon and
Dr. Michael R Hamblin | 70 | N/A | Improved grip strength | | 2012 | Tissue Oxygen
(TCPO2) | The Test Report on the Impacts of Subject Socks with
the Application of Celliant* Technical Fibers on
Transcutaneous Oxygen Pressure on a Man's Foot | Academy of Chinese
Sciences | Dr. Li Shaojing,
Wu Chuanhong, Gao
Jian, Zhu Li and
Wen Liwei | 100 | N/A | Increase in TCPO2 across
all healthy subjects | | 2012 | Tissue Oxygen
(TCPO2) | Transcutaneous Partial Pressure of Oxygen (tcPO2)
as a Primary Endpoint to Assess the Efficacy of
Celliant* as a Vasoactive Material | Long Beach VA
Memorial Hospital | Dr. lan Gordon and
Dr. Michael Coyle | 51 | N/A | An average increase of 7% in TCPO2 | | 2011 | Performance &
Recovery | Apparel with Far Infrared Radiation for Decreasing an Athlete's Oxygen Consumption During Submaximal Exercise | University of Calgary | Dr. Jay Worobets,
Dr. Darren Stefanyshyn
and Emma Skolnik | 12 | Research Journal of Textile
and Apparel | Elite/club cyclists VO2
reduced by 1.1%, increasing
anaerobic threshold | | 2010 | Sleep (pilot) | Double Blind, Placebo Controlled, Crossover Trial on the
Effect of Optically Modified Polyethylene Terephthalate
Fiber Mattress Covers on Sleep Disturbances in Patients
with Chronic Back Pain | University of CA Irvine | Dr. Marcel Hungs and
Dr. Annabel Wang | 6 | N/A | Nighttime awakenings,
sleep quality and sleep
efficiency improved | | 2009 | Foot Pain | Effect of Optically Modified Polyethylene
Terephthalate Fiber Socks on Chronic Foot Pain | University of CA Irvine | Dr. Ian Gordon and
Dr. Robyn York | 55 | BioMed Central
Complementary &
Alternative Medicine | Statistically significant reduction of pain and improved comfort for subjects (diabetic/foot neuropathy) | | 2005 | Tissue Oxygen
(TCPO2) | Holofiber Study of Thirteen (13) Healthy Subjects | University of Texas A&M | Dr. Graham McClue | 13 | N/A | An average increase in
TCPO2 levels from 10%
to 24% | | 2003 | Tissue Oxygen
(TCPO2) | Improving Blood Flow with Holofiber in the
Hands and Feet of High-Risk Diabetics | Loyola University
Chicago | Dr. Lawrence Lavery | 20 | N/A | An average increase in
TCPO2 levels from 12% in
the hands and 8% in the
feet of diabetic subjects | ## **SUMMARY OF TECHNICAL & PHYSICAL TRIALS** | Year | End Point | Title | Institution | Primary Investigators | Journal /Publication | Outcome | |------|---------------------|---|--|---|-------------------------------------|---| | 2017 | Solar IR Emissivity | Infrared Radiative Properties and Thermal Modeling
of Ceramic-Embedded Textile Fabrics | Exponent | Dr. David Anderson, John Fessler,
Matthew Pooley, Scott Seidel,
Dr. Michael R Hamblin, Haskell
Beckham and Dr. James F Brennan | Biomedical Optics Express | Emissivity increased by approximately 10x when sunlight is also used to power Celliant technology | | 2016 | IR Emissivity | Engineered Emissivity of Textile Fabrics by the
Inclusion of Ceramic Particles | Exponent | Dr. David M. Anderson,
Matthew Pooley,
Haskell W. Beckham and
Dr. James F Brennan | Optics Express | Emissivity increased by
.14 MW per CM2 at fabric
temperature of 32 Celsius
with a 42% Celliant fabric
vs. control | | 2012 | Principals of IR | Far Infrared Radiation (FIR): Its Biological
Effects and Medical Applications | Harvard/Wellman
Center for
Photomedicine | Dr. Michael R Hamblin and
Dr. Fatma Vatansever | Photonics and Lasers in
Medicine | Far Infrared Radiation (FIR)
its biological effects and
medical applications | The FDA has determined that Celliant products are medical devices as defined in section 201(h) of the Federal Food, Drug and Cosmetic Act and are general wellness products.